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The PC3/Tis21/Btg2 and Btg1 genes are transcriptional cofactors belonging to the Btg/Tob family, which regulate the development of
several cell types, including neural precursors.We summarize here the actions of these genes on neural precursors in the adult neurogenic
niches and the cognitive defects associated when their expression is altered. We consider also recent findings implicating them in neural
and non-neural tumors, since common developmental mechanisms are involved. PC3/Tis21 is required for the regulation of thematuration
of stem and progenitor cells in the adult dentate gyrus and subventricular zone (SVZ), by controlling both their exit from the cell cycle and
the ensuing terminal differentiation. Such actions are effected by regulating the expression of several genes, including cyclin D1, BMP4, Id3.
In cerebellar precursors, however, PC3/Tis21 regulates chiefly their migration rather than proliferation or differentiation, with important
implications for the onset of medulloblastoma, the cerebellar tumor. In fact PC3/Tis21 is a medulloblastoma-suppressor, as its
overexpression in cerebellar precursors inhibits this tumor; PC3/Tis21 shows anti-tumor activity also in non-neural tumors. Btg1 presents
a different functional profile, as it controls proliferation in adult stem/progenitor cells of dentate gyrus and SVZ, where is required to
maintain their self-renewal and quiescence, but is apparently devoid of a direct control of their terminal differentiation or migration.
Notably, physical exercise in Btg1-null mice rescues the loss of proliferative capability occurring in older stem cells. Both genes could be
further investigated as therapeutical targets, namely, Btg1 in the process of aging and PC3/Tis21 as a tumor-suppressor.
J. Cell. Physiol. 230: 2881–2890, 2015. © 2015 Wiley Periodicals, Inc.

The Btg2 (or PC3 in rat and Tis21 in mouse) and Btg1 genes are
transcriptional cofactors belonging to the Btg/Tob family, that
regulate division and differentiation of several cell types. This
review aims to describe the functional roles of Btg2 and Btg1 in
the generation of new neurons in the adult brain, in relation to
the control of the cell cycle and differentiation of neural stem
cells, and to the development of cerebellar tumors as a
consequence of a misregulation of the process of neurogenesis
in the cerebellum. A summary of the most recent findings on
the implication of the Btg genes in other neural and non-neural
tumors is also provided, as common mechanisms of action are
present.

PC3/Tis21, regulator of transcription and cell cycle

PC3 was initially isolated in a neural crest-derived line, the rat
pheochromocytoma PC12 cells, at the initial steps of the
differentiation into sympathetic neurons induced by nerve
growth factor (Bradbury et al., 1991). Concomitantly, the
mouse orthologue Tis21 was identified as a phorbol
ester-induced gene in NIH3T3 mouse fibroblasts (Fletcher
et al., 1991); Btg2 is the human orthologue (Rouault et al.,
1996).

PC3/Tis21 (as we refer here to PC3/Tis21/Btg2) regulates
transcription by associating with the promoters of several
genes, including cyclin D1 (Farioli-Vecchioli et al., 2007), RARb
(Passeri et al., 2006), Id3 (Farioli-Vecchioli et al., 2009) and
Cxcl3 (Farioli-Vecchioli et al., 2012a), and acting as a
component of protein complexes. These can contain histone
modifying factors to which PC3/Tis21 is known to bind, such as
the methyltransferase Prmt1 (Lin et al., 1996) and the histone
deacetylases HDAC4 or HDAC1 (Passeri et al., 2006;
Farioli-Vecchioli et al., 2007), and/or transcriptional elements

such as Caf1/CNOT8 (Rouault et al., 1998; Pr�evôt et al., 2001),
or the transcription factor HoxB9 (Pr�evôt et al., 2000).

Today, more than one hundred reports link PC3/Tis21 to
the cell cycle as a negative regulator, in neural and non-neural
cells as well as in tumor cells. For example, PC3/Tis21 was
found able to arrest the cell cycle progression in PC12 cells
(Montagnoli et al., 1996; el-Ghissassi et al., 2002); furthermore,
PC3/Tis21 synergizes with nerve growth factor in inducing
their differentiation (Corrente et al., 2002; el-Ghissassi et al.,
2002). Similarly, overexpression of PC3/Tis21 induces arrest in
the G0-G1 phase of the cell cycle in non-neural cells, such as
normal fibroblasts (NIH3T3 cells; Guardavaccaro et al., 2000),
mouse embryo fibroblasts and embryonic stem cells (Rouault
et al., 1996; Boiko et al., 2006), granulosa cells of the ovary (Li
et al., 2009), or breast (Kawakubo et al., 2004) and prostate
cancer cells (Ficazzola et al., 2001). Such G0-G1 phase arrest is
consequent to inhibition of the expression of cyclin D1 and of
the activity of Cdk4/cyclin D1 complexes on pRb
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(Guardavaccaro et al., 2000; Kawakubo et al., 2004; Boiko et al.,
2006). Interestingly, a pRb-independent mechanism of
inhibition of the G1/S phase by PC3/Tis21 has been found to
involve the reduction of cyclin E synthesis and cdk4 activity, in
human embryonic kidney 293 cells (Lim et al., 1998).

Moreover, PC3/Tis21 has been involved also in the inhibition
of the G2/M phase of the cell cycle, mainly in DNA-damaged
mouse embryonic stem cells (Rouault et al., 1996), in monocyte
cells (Kim et al., 2014) or in tumor cells. In this latter regard, the
up-regulation of PC3/Tis21 correlates with G2/M arrest in
U937 monocytic tumor cells, by inhibiting cyclin B1-Cdc2
binding (Ryu et al., 2004); similarly, PC3/Tis21 inhibits the
proliferation of transformed hepatocytes by disrupting cyclin
B1-cdk1 activity (Park et al., 2008).

Role of PC3/Tis21 in the control of stem/progenitor cells
in the adult dentate gyrus and subventricular zone

New neurons are constantly generated in the adult brain within
two neurogenic niches, the dentate gyrus of the hippocampus
and the subventricular zone (SVZ), adjacent to the lateral
ventricle (Bayer et al., 1982; Cameron et al., 1993;
Alvarez-Buylla and Lim, 2004). These new neurons have been
shown to be required for hippocampus-dependent learning and
memory and for olfactory memory, respectively (Zhao et al.,
2008a; Lazarini and Lledo, 2011).

In the dentate gyrus the new neurons arise from stem cells
with radial glial-like morphology (Seri et al., 2001; Graham
et al., 2003; Komitova and Eriksson, 2004; Kempermann et al.,
2004) that mature in two stages of progenitor cells (named
type-2ab and type-3), to finally become early postmitotic and
terminally differentiated neurons (stage 5 and stage 6,
respectively; Filippov et al., 2003; Fukuda et al., 2003;
Kronenberg et al., 2003; Brandt et al., 2003). Similarly, the adult
neurons of the SVZ derive from a subset of astrocytes
corresponding to quiescent neural stem cells (B cells), which
evolve into transit amplifying cells and neuroblasts (C and A
cells, respectively) that migrate to the olfactory bulb (Doetsch
et al., 2002; Alvarez-Buylla and Lim, 2004; Zhao et al., 2008a).

PC3/Tis21 is physiologically expressed in neural progenitor
cells of different areas of the adult murine brain, such as the
cerebellum, the hippocampus and the SVZ, and induces them to
exit the proliferative state and differentiate (Canzoniere et al.,
2004; Farioli-Vecchioli et al., 2007, 2008, 2009; Attardo et al.,
2010). Evidence obtained with short pulses of BrdU
incorporation indicates that PC3/Tis21 is endowed with an
intrinsic inhibitory action of the S-phase in progenitor cells of
the dentate gyrus (Farioli-Vecchioli et al., 2009). Indeed,
overexpression of PC3/Tis21 in dentate gyrus progenitor cells,
in a transgenic mouse model, decreases the number of cells
incorporating BrdU (Farioli-Vecchioli et al., 2008), while its
ablation increases this number and appears to reduce the
length of the G1 phase of dentate gyrus progenitor cells
(Farioli-Vecchioli et al., 2009). In fact, the ratio of progenitor
cells in S-phase (BrdUþ) to those actively dividing (Ki67þ)
increases in PC3/Tis21 knockout progenitor cells, this ratio
being inversely proportional to the length of the cell cycle and/
or of the G1-S phase (Farioli-Vecchioli et al., 2009). The
inhibition of the cell cycle by PC3/Tis21 is likely to result in an
increase of the asymmetric neurogenic division of progenitor
cells, which might well explain the accelerated differentiation of
dentate gyrus progenitor cells occurring without change in the
final number of neurons generated, after overexpression of
PC3/Tis21 (Farioli-Vecchioli et al., 2008). This would also be
consistent with the findings that: i) during brain development
expression of PC3/Tis21 is associated to proliferating
neuroblasts undergoing a neurogenic division (Iacopetti et al.,
1994, 1999); ii) telencephalic neural progenitors switching from
proliferative to neuron-generating division express PC3/Tis21

and present a lengthening of the cell cycle, as measured by
BrdU cumulative labeling, suggesting this as a general
mechanism to start the neuron-generating division (Calegari
et al., 2005).

However, PC3/Tis21 has also a pro-differentiative action
intrinsic and independent of the antiproliferative action. This
was suggested by the group of Gerd Kempermann, observing
that in a Tis21 GFP-knockin mouse Tis21 was expressed not
only in proliferating dentate gyrus cells but also selectively in
postmitotic neurons (stage 5; Attardo et al., 2010), and was
demonstrated by the observation that stage 5 early postmitotic
dentate gyrus neurons lacking PC3/Tis21 are unable to
terminally differentiate into stage 6, although they have already
exited the cell cycle (Farioli-Vecchioli et al., 2009). Thus, PC3/
Tis21 acts according to a two-step process, i.e., arrest of the
cell cycle, followed by terminal differentiation. This is also
evident in the stem cells of the adult SVZ, where ablation of
PC3/Tis21 leads to increase of their proliferation and
impairment of the terminal differentiation of neuroblasts (A
cells) (Farioli-Vecchioli et al., 2014a).

Notably, the pro-differentiative action of PC3/Tis21 occurs
only in already postmitotic cells; thus, in order to differentiate it
is first necessary that the neural stem cell exits the cycle,
becoming postmitotic (Farioli-Vecchioli et al., 2009; Attardo
et al., 2010). This appears to be a general mechanism
throughout neural differentiation, which first requires an
inhibitor of the cell cycle, as pointed out by Calegari et al.
(2005) such as PC3/Tis21 itself or another gene induced by
PC3/Tis21. It is worth noting that a stimulus inducing the
proliferation of dentate gyrus progenitor cells, such as the
overexpression of cyclin D1, is unable to increase the number
of differentiated neurons unless is preceded by a period of
arrest of the proliferation to allow differentiation to occur,
consistently with the need of a two-step process (Artegiani
et al., 2011).

On the whole, the functional profile of PC3/Tis21 appears
that of a pan-neural activator of the transition from neural
progenitor cell to early postmitotic and then to terminally
differentiated neuron (see Fig. 1A). Table 1 summarizes the
altered phenotypes observed in different neural areas of PC3/
Tis21 transgenic and mutant mouse models (including the
cochlear neuroepithelium and neocortex, see below).

Notably, an alteration of the physiological expression of
PC3/Tis21 in neural progenitor cells causes cognitive
impairments dependent on the dentate gyrus and SVZ. In fact,
overexpression of PC3/Tis21 in dentate gyrus progenitor cells,
which induces an acceleration of differentiation, results in a
very strong deficit of the hippocampus-dependent memory, i.
e., of the spatial and associativememory (Farioli-Vecchioli et al.,
2008). If, on the contrary, PC3/Tis21 is ablated, the ensuing
impairment of terminal differentiation of dentate gyrus neurons
is associated to a selective loss of associative memory
(Farioli-Vecchioli et al., 2009), while the impaired
differentiation of the SVZ/olfactory bulb neurons is associated
to a loss of olfactory discrimination (Farioli-Vecchioli et al.,
2014a). Clearly, these findings point to to a general paradigm, i.
e., how the timing of differentiation of a neuron is extremely
critical for its function (for discussion, Tirone et al., 2013).

Neural pathways involving PC3/Tis21 function

In the absence of PC3/Tis21, progenitor cells of the dentate
gyrus and stem cells of the SVZ show a great increase of the Id3
protein - which is an inhibitor of proneural basic
helix-loop-helix (bHLH) genes (Lyden et al., 1999; Yokota,
2001) - and also, at least in SVZ, an increase of cyclinsD, A and E
and a very strong decrease of BMP4 expression
(Farioli-Vecchioli et al., 2009, 2014a). BMP4 is known to
maintain the quiescence of stem cells in the dentate gyrus and
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Fig. 1. Working model for the action of PC3/Tis21 in the (A) adult dentate gyrus, (B) adult subventricular zone and (C) postnatal cerebellum,
and (D) of Btg1 in dentate gyrus and SVZ. (A) Dentate gyrus. In the stem/progenitor cells of the dentate gyrus, PC3/Tis21 induces
differentiation by directly inhibiting Id3 (Farioli-Vecchioli et al., 2009), inhibitor of proneural genes. Furthermore, as Id3 may inhibit p27
expression (Kee and Bronner-Fraser, 2005), PC3/Tis21 may inhibit the cell cycle also through the negative regulation of Id3 (see text). It has
yet to be defined whether PC3/Tis21 inhibits the cell cycle in the dentate gyrus also through cyclin D1 or, rather, cyclin D2 (considered, in the
hippocampus, more critical than cyclin D1: Kowalczyk et al., 2004). Scheme modified from Farioli-Vecchioli et al. (2009). (B) SVZ. The
ablation of PC3/Tis21 in the SVZ elicits an increase of proliferation of the stem cells and the expression of several cyclins as well as of Id3,
whereas pro-differentiative genes such as NeuroD1 and BMP4 are downregulated, consistently with the idea that PC3/Tis21 is required for cell
cycle arrest and differentiation. Remarkably, the arrest of differentiation observed in primary SVZ cells is reverted by BMP4 and by Id3
silencing. Modified from Farioli-Vecchioli et al., (2014a). (C) Postnatal cerebellum. At the cerebellar surface (EGL) Sonic hedgehog (Shh)
triggers the proliferation of the granule neuron precursor cells (GCPs). Overexpression of PC3/Tis21 inhibits the proliferation of the GCP
(through cyclin D1; Canzoniere et al., 2004) and triggers their differentiation and migration (Farioli-Vecchioli et al., 2012a), thus reducing
tumor frequency in Patched1 mice (Farioli-Vecchioli et al., 2007). When PC3/Tis21 is silenced no effect on the proliferation of GCPs is
observed, but their migration is impaired. ML, molecular layer; IGL, internal granular layer. (D) The ablation of Btg1 triggers
hyperproliferation in stem/progenitor cells of the dentate gyrus and SVZ of young mice, followed by an age-dependent decrease of the
proliferation and by quiescence. A neurogenic stimulus such as physical exercise reactivates the proliferation of Btg1-null stem cells,
suggesting that they hold a potential for rejuvenation.
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SVZ (Lim et al., 2000; Mira et al., 2010). Thus, PC3/Tis21
inhibits the expression of cyclins and Id3 and induces that of
BMP4. Notably, the silencing of Id3 or the treatment with
recombinant BMP4 protein fully rescue the defect of terminal
differentiation in PC3/Tis21-null SVZ neurosphere cells,
indicating that Id3 and BMP4 are both responsible for the
PC3/Tis21-dependent impairment of terminal differentiation
of the neurons (Farioli-Vecchioli et al., 2014a). As Id3 and
BMP4 appear to be anti- and pro-differentiative, respectively,
a fair possibility is that PC3/Tis21 acts as upstream controller
of the opposite actions they exert in the SVZ (see Fig. 1B).
Furthermore, the fact that in the PC3/Tis21 null dentate gyrus
the number of Id3-positive proliferating progenitor cells
increases significantly (Farioli-Vecchioli et al., 2009) suggests
that PC3/Tis21 may inhibit the cell cycle also through a
negative regulation of Id3 (which may in turn inhibit p27: Kee
and Bronner-Fraser, 2005; Fig. 1A).

Role of PC3/Tis21 in the control of cerebellar progenitor
cells and tumorigenesis

PC3/Tis21 is expressed physiologically in the precursors of
cerebellar granule neurons (GCPs) as early as they are
generated from the rhombic lip (Canzoniere et al., 2004), a
germinative epithelium at the roof plate of the fourth
ventricle, from which GCPs migrate at the surface of the
prospective cerebellum to form the external granular layer
(EGL) (Hatten, 1999; Wang and Zoghbi, 2001). The
cerebellum develops postnatally from the EGL, through
migration of the GCPs to the internal layers of the cerebellum
where they differentiate (Rakic, 1971). Early after birth the
GCPs undergo an intensive proliferation in the EGL under the
proliferative stimulus of Sonic Hedgehog (Shh; Dahmane and
Ruiz i Altaba, 1999;Wallace, 1999;Wechsler-Reya and Scott,
1999). Importantly, the prolonged mitotic activity to which
the GCPs are subject at the surface of the cerebellum during
the postnatal morphogenesis, makes them potential targets
of transforming insults (Wang and Zoghbi, 2001). This can
lead to the formation of medulloblastoma (MB), which, in at
least 25% of cases, originates from GCPs presenting a
misregulation of their proliferative pathways (Yang et al.,
2008; Gibson et al., 2010). Today four types of MB have been
identified (Wnt-associated, Shh-associated, group 3 and 4),
which develop from different cellular origins (see Box 1); MB
is clearly of multigenic origin and the expression of PC3/Tis21
has been shown to be reduced in several MBs, mainly those
Shh-dependent (Farioli-Vecchioli et al., 2007). The
overexpression of transgenic PC3/Tis21 in GCPs exerts a
powerful inhibitory action on the proliferation of normal and
neoplastic GCPs, favoring their differentiation and reducing
the frequency of tumors in a Shh-activated mouse model of
spontaneous MB (Patched1þ/�; Farioli-Vecchioli et al., 2007).
This indicates that PC3/Tis21 is a MB suppressor;
consistently, the frequency of spontaneous MB in the
Patched1þ/� mouse highly increases if PC3/Tis21 is ablated
(Patched1þ/�/Tis21KO mice; Farioli-Vecchioli et al., 2012a;
see Table 1).

Interestingly, overexpression of PC3/Tis21 in GCPs
inhibits their proliferation through a mechanism involving the
repression of cyclin D1 and recruitment of PC3/Tis21 to the
cyclin D1 promoter accompanied by histone deacetylation
(Farioli-Vecchioli et al., 2007); in contrast, ablation of PC3/
Tis21 in the cerebellum causes a significant impairment of
migration and differentiation of GCPs, but does not affect
their proliferation (Farioli-Vecchioli et al., 2012a). Preliminary
data indicate that the antiproliferative action of PC3/Tis21 in
the cerebellum is vicariated by the family-related gene Btg1
(M. Ceccarelli and L. Micheli, unpublished data;
Farioli-Vecchioli et al., 2012b); this further suggests that theTa
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antiproliferative and pro-differentiative actions of PC3/Tis21
are dissociable.

Moreover, we and others (Haag et al., 2012; Farioli-Vecchioli
et al., 2012a) have pointed out how the timing of migration of
preneoplastic GCPs (pGCPs) during cerebellar development is
critical for their malignant progression. These reports show
that ablation of PC3/Tis21 or of Nos2 (nitric oxide synthase)
hinders the migration of both normal and neoplastic GCPs
from the surface of the cerebellum toward the internal layers.
This is a consequence of the decrease of expression of Gap43
or of the chemokine Cxcl3, which specifically induce GCPs
migration and are activated by Nos2 and PC3/Tis21,
respectively. Ablation of either Nos2 or PC3/Tis21 in
Shh-activated mice causes a large increase in the frequency of
MB. Plausibly, a prolonged permanence in the external
proliferative cerebellar region under control of Shh highly
increases the probability of neoplastic transformation. A
relevant observation is that treatment with Cxcl3 ex vivo of
cerebellar slices from Shh-activated mice causes a decrease of
the area of tumor lesions (Farioli-Vecchioli et al., 2012a). The
underlying mechanism is that neoplastic GCPs can still
differentiate and migrate like normal GCPs, although they are
able to generate a tumor when transplanted (Kessler et al.,
2009). This implies that neoplastic cerebellar precursors can be
forced to differentiate and exit the neoplastic program, by
inducing them to migrate from the Shh-controlled proliferative
region at the surface of the cerebellum through the
migration-promoting action of Cxcl3 or Gap43. Thus, these
studies raise the possibility of controlling the development of
MB by regulating the migration of GCPs. This would offer the
possibility of a novel therapy of MB. Certainly, there are caveats
to be evaluated; for instance, after a yet undefined period of

time, pGCPs may become irreversibly transformed and lose
the ability to differentiate. If so, it is necessary that the
treatment with proteins regulating GCP migration such as
Cxcl3 or Gap43 takes place at the very initial stages of the
tumor. See summary in Figure 1C.

Evidence for co-regulation of GCP development by PC3/
Tis21 and Math1

A further issue concerns the observation that PC3/Tis21
appears to regulate Math1 expression in GCPs. In fact, the
profiles of expression of PC3/Tis21 andMath1 in GCPs overlap
since early embryonic stages in the rhombic lip (Canzoniere
et al., 2004). Furthermore, the overexpression of PC3/Tis21 in
GCPs causes an induced expression of Math1 in GCPs,
whereas the ablation of PC3/Tis21 causes a decrease
(Canzoniere et al., 2004; Farioli-Vecchioli et al., 2013). This is
relevant considering thatMath1 specifies the fate of GCPs: in its
absence GCPs are generated from the rhombic lip, but do not
differentiate and the EGL is never formed (Ben-Arie et al.,
1997; Gazit et al., 2004). Moreover, if Math1 is silenced, no MB
cell develops (Zhao et al., 2008b; Flora et al., 2009). An
interesting possibility was proposed by Flora et al. (2009).
When cerebellar precursors are in a Shh-dependent
proliferative environment, Math1makes the cells competent to
transduce the proliferative signal of Shh and promotes the MB.
In contrast, when the cells are exposed to differentiative
signals, Math1 has a pro-differentiative action, that prevents the
MB. We have previously proposed that PC3/Tis21 may induce
the differentiation of GCPs by inducing Math1 (Canzoniere
et al., 2004), and in keeping with this idea, it is possible that the
ablation of the pro-differentiative gene PC3/Tis21 in
Shh-activated mice, depriving the GCPs of a differentiative
stimulus, could favor the pro-Shh action of Math1.
Consequently, the action of activated Shh on GCPs at the
surface of the cerebellum would became more penetrant.

Reduction of cerebellum and neocortex volume
(microcephaly) by PC3/Tis21 overexpression during
embryogenesis

An interesting phenotype associated to continued
overexpression of PC3/Tis21 in GCPs and in cortical
precursors since conception consists in a decrease of the size
of cerebellum (up to 55%) and of the neocortex, in 6–8% of
mice (Canzoniere et al., 2004). Similarly, cyclin D1/D2-null
mice show a selective decrease of the cerebellar size
(Ciemerych et al., 2002), also suggesting that at least in part
D-type cyclins may be involved in the PC3/Tis21-dependent
phenotype, as cyclin D1 is clearly down-regulated in GCPs
overexpressing PC3/Tis21 (while cyclin D2 is barely affected)
(Canzoniere et al., 2004). Moreover, recently Fei et al. (2014)
observed that overexpressing Tis21 (mouse sequence) in
embryonic brain after E13.5 (by removing an inhibitory region
at the 30UTR of Tis21, targeted bymiRNA-92) led to a selective
impairment in the growth of the neocortex, with a phenotype
similar to microcephaly, a developmental pathology. Fei et al.
conclude that the expansion of neocortex precursors is
inhibited by Tis21 without acting on the cell cycle but by
altering the mode of cell division; this idea comes, however,
from an experiment of cumulative BrdU labeling of the total
population of neural cells of the ventricular zone at E14.5,
without distinction between subpopulations. As the authors
perform electroporation of the Tis21 mutated construct in the
dorsolateral telencephalon of E13.5 embryos, it would be
interesting to see whether an electroporation at a later
developmental stage could affect also the cerebellum, as at
E13.5 a limited number of cerebellar precursors exist in the
rhombic lip.

Box 1 Different embryonic origin of MB

Four molecular subtypes of MBs have been identified,
molecularly different and with distinct cellular origins
(Shh-type, Wnt-type, groups 3 and 4).

Three different progenitor cell populations within the
rhombic lip - a germinative epithelium at the roof plate of
the fourth ventricle - have been identified as possible origins
for MB. First, cerebellar granule neuron precursors (GCPs)
derived from the upper rhombic lip (URL) give rise to
Shh-type MBs (Sch€uller et al., 2008); second, cochlear
granule neuron precursors from the auditory rhombic lip
generate Shh-type MBs that develop near to the cochlear
nuclei (Grammel et al., 2012); and, third, pontine grey
neuronal progenitors generated from the lower rhombic lip
have been suggested as a source forWnt-type MBs (Gibson
et al., 2010). These findings were based on the different
expression of specific genes in GCPs: i) in Shh-type MBs the
genes of the Shh pathway as well as Math1 (which is
responsible for the specification and differentiation of
GCPs) had altered expression; ii) mice mutated for theWnt
pathway effector CTNNB1 showed altered expression of
Zic1 and defects of migration of neurons from lower
rhombic lip to the the dorsal and ventral brainstem (no
change being observed for proliferation or apoptosis). The
latter altered genetic and cellular pattern was associated to
Wnt-type MBs developing outside the cerebellum, in the
dorsal brainstem (Gibson et al., 2010). Interestingly, also
group 3 MBs have been proposed to derive from GCPs
(Northcott et al., 2012), while the cellular origin of MB
group 4 is unknown. As the expression of Tis21 matches
that of Math1 (Canzoniere et al., 2004), it is plausible to
think that Tis21 is involved in Shh-dependent MBs (see
text).
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Implication of Btg2 in gliomas and in non-neural tumors

The Btg2 gene (as we refer to PC3/Tis21/Btg2 throughout this
section) is generally considered an antioncogenic gene
(Matsuda et al., 2001; Tirone, 2001; Duriez et al., 2004; Lim,
2006). The loss of Btg2 has been implicated in cell
transformation in several different tumors, including another
neural tumor such as the glioma (Appolloni et al., 2012) or
non-neural such as prostate (Ficazzola et al., 2001 Coppola
et al., 2013), lung (Wei et al., 2012), breast (Kawakubo et al.,
2006; Takahashi et al., 2011), bladder (Wagener et al., 2013),
and liver tumors (Park et al., 2008). Low or absent levels of Btg2
expression in tumors have been shown to generally correlate
with a less favourable clinical prognosis (M€ollerstr€om et al.,
2010; Jalava et al., 2012). Notably, point mutations in the Btg2
gene have been reported in B cell malignancies (Morin et al.,
2011).

A very evident role of Btg2 in neural tumorigenesis has been
recently pinpointed by reports showing that in a mouse model
of PDGF-induced gliomas Btg2 plays a critical role in tumor
progression and that patients with gliomas presenting low
levels of Btg2 expression have a significantly worse prognosis
(Calzolari et al., 2008; Appolloni et al., 2012).

Other recent reports demonstrated an important role for
Btg2 in cellular migration during tumorigenesis. In particular, it
was shown that the endogenous expression of Btg2
contributes to the migratory potential of bladder cancer cells
and that high levels of Btg2 in these cells are linked to decreased
cancer-specific survival (Wagener et al., 2013). However, such
positive correlation between Btg2 expression and migration
capacity contrasts with the observations in breast cancer cells
where these parameters exhibited an inverse correlation
(Takahashi et al., 2011); similarly, another study revealed that
Btg2 negatively regulated cancer cell migration by inhibiting Src
activity through downregulation of ROS generation in
mitochondria (Lim et al., 2012). Altogether, keeping in account
also our studies on the migration of cerebellar precursors, it
seems evident that Btg2 can exert differential effects on the
cellular migration depending on the cellular context, and that
this action plays a role in tumorigenesis.

Btg2 is involved in different pathways of tumor cells, as Btg2
is a target of p53 and induces suppression of Ras-induced
transformation (Boiko et al., 2006). More recently, Lim and
colleagues demonstrated that Btg2 activates Erk1/2 and inhibits
Akt in response to all-trans-retinoic acid during differentiation
of acute promyelocytic leukemia HL-60 cells, in this way
cooperating to down-regulate c-myc and exerting an
anticarcinogenic potential (Imran et al., 2012).

A further way by which PC3/Tis21 may exert its
antioncogenic activity is also by accelerating DNA repair
through Prmt1 methylation, which prevents damage signals
from Chk2(T68)-p53(S20) (Choi et al., 2012).

Btg1 is required to maintain the pool of stem cells in the
adult dentate gyrus and subventricular zone

Among the genes of the Btg/Tob family, Btg1 is the one more
closely related to PC3/Tis21 (65% homology; Rouault et al.,
1992; Tirone, 2001). Also Btg1 is required for the control of the
proliferation of stem/progenitor cells in the dentate gyrus and
SVZ, as cycling progenitor cells ablated of Btg1 increase
strongly in number (labeled as Ki67þ or BrdUþ cells after a
short BrdU pulse), as observed for PC3/Tis21 (Farioli-Vecchioli
et al., 2012b). Such an increase, however, is transient, being
evident only during the early postnatal period (with a peak at
P7), whereas in adult Btg1-null mice (2-month-old) the total
pool of proliferating dentate gyrus and SVZ cells is reduced,
relative to control mice. Consistently, the Btg1-null progenitor
cells at P7 show a strong preference to be in cycle, as judged

from the reduced number of BrdUþKi67� cells that have
entered the S-phase and then ceased to cycle, whereas the
adult Btg1-null stem/progenitor cells exit from the cell cycle
and become quiescent with much higher frequency than
wild-type. Such an exit is concomitant with a several-fold
increase, relative to the wild-type, of stem cells (type-1)
expressing p21 or p53 and is followed within a few days by
apoptosis (Farioli-Vecchioli et al., 2012b).

Thus, the ablation of Btg1 results primarily in a disinhibition
of the cell cycle, accompanied by apoptosis - a normal event
after suppression of a negative regulator of the cell cycle (Lee
et al., 1994) – and is secondarily followed by an age-dependent
decrease of the proliferative capacity of progenitor cells.
Accordingly, the length of the S phase increases considerably in
Btg1-null adult dentate gyrus stem cells and progenitor cells, as
recently observed by a novel technique for cell cycle kinetics
analysis (Farioli-Vecchioli et al., 2014b). Hence, it appears that
at the origin of the age-dependent decrease of the proliferative
capability of Btg1 knockout stem cells is a compensatory
increase of the cell cycle inhibitors p21 and p53, which drives
the cells to quiescence. This would explain why the pool of
stem cells is evidently not fully depleted in the Btg1-null adult
dentate gyrus, but can recover its proliferative capability if
stimulated (see below).

Notably, primary SVZ neurospheres from adult Btg1-null
mice show a strong reduction of the ability to replicate by
asymmetric division, responsible for self-renewal, whereas the
opposite occurs in primary neurospheres from P7 Btg1-null
mice (Farioli-Vecchioli et al., 2012b). Thus, the lengthening of
the cell cycle appears to be not necessarily associated to the
induction of asymmetric division (see above), which suggests
that the correlation between inhibition of cell cycle and
asymmetric division in neural cells, although rich of
circumstancial evidence (see Malumbres, 2011 for review), is
likely to involve other regulatory cues controlling the division
mode of progenitor cells.

As a whole, the reduced number of adult neurons generated
in Btg1-null dentate gyrus and olfactory bulb (where the
neurons generated in SVZmigrate) is basically the consequence
of both apoptosis and loss of proliferative ability (quiescence)
of the pool of stem and progenitor cells, rather than of an
impairment of differentiation. Altogether, Btg1 appears to be
necessary for the maintenance and self-renewal of stem cells in
the adult dentate gyrus and SVZ; interestingly, the phenotype of
loss of the stem cell pool, observed after removal Btg1, is
present also in the knockout of p21 (Kippin et al., 2005) or of
the Notch effector RBPJ (Imayoshi et al., 2010).

Thus, the functional profile of Btg1 does not fully overlap
that of PC3/Tis21, which seems to play a crucial role in terminal
differentiation of the adult dentate gyrus and SVZ neurons
(Farioli-Vecchioli et al., 2009, 2014a; Attardo et al., 2010).
Moreover, Btg1 is not induced by p53 (Cortes et al., 2000),
unlike PC3/Tis21, which acts in a pathway parallel to p21, being
induced by p53 as is p21 (Rouault et al., 1996; Sionov et al.,
2000).

Functionally, the reduced number of adult neurons in the
dentate gyrus of Btg1-null mice is associated to fine
impairments in hippocampus-dependent learning and memory,
i.e., in pattern separation, which is the ability to discriminate
among potentially overlapping experiences of episodic
memory. This is also consistent with the notion that adult
neurogenesis is expected to enhance the extent of information
encoded by the dentate gyrus (Farioli-Vecchioli et al., 2012b;
Fig. 1D).

Implication of Btg1 in non-neural tumors

So far, neural tumors involving Btg1 have not been identified.
However, the level of expression of Btg1 is directly
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proportional to the inhibition of proliferation and tumor
metastasis, and to the induction of apoptosis in a variety of
non-neural tumor cells; namely, in breast (Zhu et al., 2013; Li
et al., 2014), ovarian (Zhao et al., 2013), thyroid (Lu et al.,
2014), liver (Sun et al., 2014a), nasopharyngeal (Sun et al.,
2014b), and non-small cell lung cancers (Sun et al., 2014c).
Moreover, deregulation of Btg1 by gene deletions, point
mutations or chromosomal translocations is frequently
observed in B cell malignancies (Rimokh et al., 1991; Lohr et al.,
2012; Waanders et al., 2012). Remarkably, functional parallels
are present in the role played by Btg1 and PC3/Tis21 in the
maturation of blood and neural precursor cells (B. Scheijen,
personal communication). Furthermore, given that the Btg1
mRNA is expressed in the cerebellum (Farioli-Vecchioli et al.,
2012b, 2014b), an involvement of the gene also in the
development of MB is possible.

Recovery of the Btg1-dependent loss of proliferative
potential in dentate gyrus and SVZ stem cells

It has recently been shown that physical exercise is able to fully
restore the declined neurogenesis due to the loss of the Btg1
gene in the adult neugenic niches (Farioli-Vecchioli et al.,
2014b). It is known, as indicated by several studies, that in the
adult dentate gyrus voluntary exercise facilitates both the
structural and functional plasticity and enhances cell
proliferation and neurogenesis (van Praag et al., 1999 a,b) as
well as synaptic plasticity (van Praag et al., 1999b; Farmer et al.,
2004; Titterness et al., 2011), thus providing an improvement in
several specific hippocampus-dependent behavioural task
(Creer et al., 2010; Hopkins et al., 2011; Kohman et al., 2012).
Moreover, physical activity is able to overcome in part the
depletion of adult neurogenesis occurring during aging and
brain disease (Van Praag et al., 2005; Siette et al., 2013; Marlatt
et al., 2013).

In the Btg1 knockout mice, 12 days of running significantly
increase the cell proliferation and neuroblast differentiation
in the adult hippocampal dentate gyrus and SVZ, by
reactivating within these adult neurogenic niches the
hyperproliferation and expansion of the neural stem cell pool
observed only transiently in young Btg1 knockout mice. The
events above described appear to be dependent on the
running-induced shortening of S-phase and consequently on
the cell cycle length of neural stem and progenitor cells. In
contrast, in the Btg1 wild-type mice running provokes the
shortening of the S-phase and cell cycle only of committed
progenitor cells (Farioli-Vecchioli et al., 2014b). Remarkably,
these data indicate that the replicative potentiality of the
neural stem cells is not limited by aging and that the deprived
stem cells pool is still ready to be reactivated through
physical exercise if the inhibitory cell cycle control exerted
by Btg1 is missing. This also highlights the key role of Btg1 in
maintaining the quiescence of adult NSC (Farioli-Vecchioli
et al., 2014b; Fig. 1D).

Another recent report suggested that 5 days of voluntary
physical exercise do not induce a significant change in cell cycle
kinetics of stem/progenitor cells in the dentate gyrus, despite a
strong increase of proliferation of newborn neurons in dentate
gyrus of runner mice (Fischer et al., 2014). The authors
conclude that small cell cycle alterations in cell cycle length
after running may represent only a consequence rather than
the causal regulating factor of the neural precursor expansion
in the dentate gyrus.

It is worth noting that these conflicting data may reflect
different experimental paradigms (12 vs 5 days of run as well as
different housing conditions of mice during voluntary running).
At any rate, they certainly invite a further analysis of the
molecular pathways involved in the activation of proliferation
induced by running in neural progenitors.

Given the evidence that physical exercise in Btg1-null mice
rescues the loss of proliferative capability occurring in older
stem cells, this strongly suggests that Btg1 should be examined
as a therapeutical target in the process of neural aging.
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